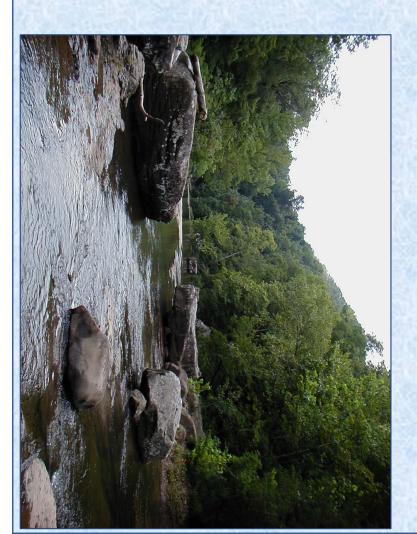
An Evaluation of Continuous Monitoring Data for Assessing Dissolved-Oxygen in the Boston Mountains


Lower Mississippi-Gulf Water Science Center **Billy Justus and Lucas Driver** U.S. Geological Survey Little Rock, Arkansas

NSCS provided to meet the need for timely best science. The information is authorized or unauthorized use of the information. U.S. Government may be held liable for any damages resulting from the provided on the condition that neither the U.S. Geological Survey nor the This information is preliminary and is subject to revision. It is being

USGS (Science) Mission Areas

- Water
- Ecosystems
- Energy and Minerals
- Natural Hazards
- Climate and Land Use
 Change
- Core Science Systems
- Environmental Health

USGS Water Resources Mission Statement

To provide reliable, impartial, timely information resources. needed to understand the Nation's water

Protect and enhance water resources for human health, aquatic health, and environmental quality.

to different types of waterbodies and ecoregions. the established national standards have only a general application and are not specific Water-Quality Standards: Almost 45 years after passing the Clean Water Act (CWA),

Current Arkansas Dissolved Oxygen (DO) Standards

Arkansas DO standards for 3 Ecoregions

Watashadalaa	Primary	Critical
Watershed size	(November-April)	(May-October)
	mg/L	mg/L
Ozark Highlands		
<10-mi ²	6	2
10- to 100-mi ²	6	5
>100-mi ²	6	6
Boston Mountains		
<10-mi ²	6	2
>10-mi ²	6	6
Arkansas River Valley		
<10-mi ²	5	2
10- to 150-mi ²	5	з
151-400 mi ²	5	4
>400 mi2	5	5

*Concentrations are in milligrams per liter (mg/L).

- Primary season < 22 °C
- Critical season > 22 °C
- Data collected during discrete samples
- Short-term continuous data (e.g. 72 hours)

"Stream and river monitoring segments will be listed as non-support when more than 10 percent of the total samples for primary or critical season within the period of record fail to meet the minimum applicable dissolved oxygen standard listed in APC&EC Reg. 2.505"

Discrete sample data – collected manually or with automatic samplers

Continuous data records

Electronic field monitors are capable of measuring DO and other field parameters almost continuously

Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting

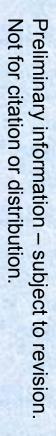
U.S. Department of the Interior U.S. Geological Survey

≥USGS

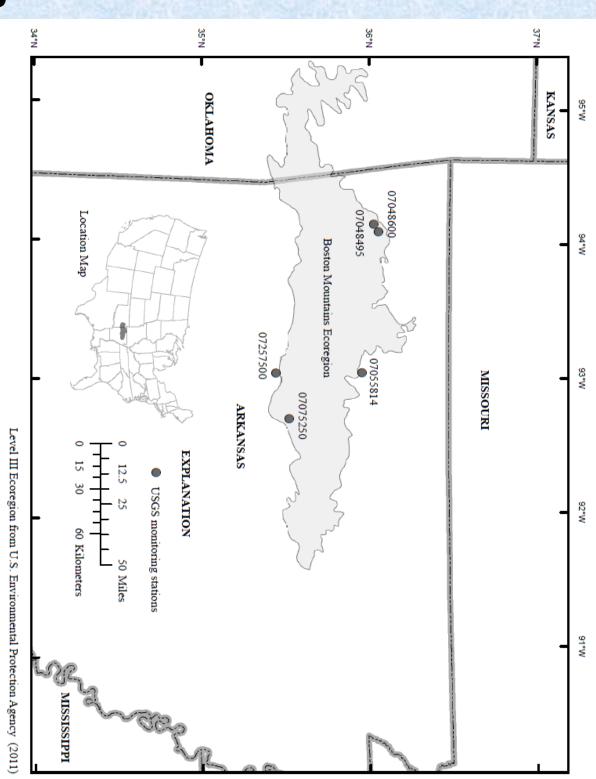
Preliminary information – subject to revision.

Not for citation or distribution.

Problem


- An increasing amount of continuous DO data has resulted in the need for Arkansas to appropriately assess those data to better meet requirements defined in the Clean Water Act
- There is no guidance for how States should assess continuous DO data
- States who use continuously monitored DO data for regulatory purposes and time (e.g. diurnally, seasonally) be expected across space (e.g. a range of stream disturbance) are challenged to determine the amount of DO variability that can

Study Objectives


- (1) To compare DO variability at least-disturbed (best available) and disturbed season (non-reference quality) streams in the Boston Mountains for the critical
- (2) To evaluate the current DO standard and determine if the exceedance value used in the current assessment methodology is appropriate
- (3) To evaluate the degree of DO variability that may be explained by other constituents (e.g. pH, specific conductivity, and water temperature).

Locations of 5 continuous monitoring locations in the Boston Mountains, Arkansas

≥USGS

USGS Not for Citation or Distribution Preliminary Information—Subject to Revision.

124	esct.	1000	E.		LOUI DESALES
Town Branch	White River	Big Creek	Illinois Bayou	South Fork Little Red River	Stream name
07048495	07048600	07055814	07257500	07075250	Site no.
30	400	89.9	241	47.6	Drainage area (mi ²)
30 2015-06-17 201	2014-05-03 201	2014-06-02 201	2013-05-14 201	2013-06-12 201	Start of period
2015-09-30	2015-09-30	2015-09-30	2015-09-30	2015-09-30	End of period
96	127	202	323	313	Critical temp. days
7,488	11,007	14,623	27,986	21,715	No. of unit values

Sample Characteristics for DO data for Critical Temperature Days (water temperatures were > 22°C)

Characteristics of the 5 sites

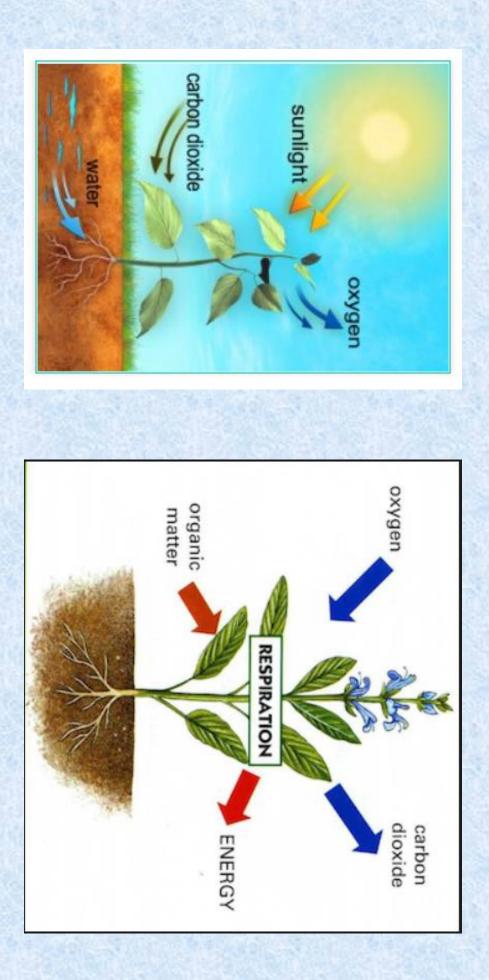
- Watersheds >10 mi²
- Gradient of land use and nutrient concentrations

Relations among Dissolved Oxygen, Nutrients, and Land Use

Intensified land use can increase stream nutrient concentrations.

Increasing stream nutrient concentrations can stimulate aquatic plant productivity (i.e. benthic algae, phytoplankton, and macrophytes)

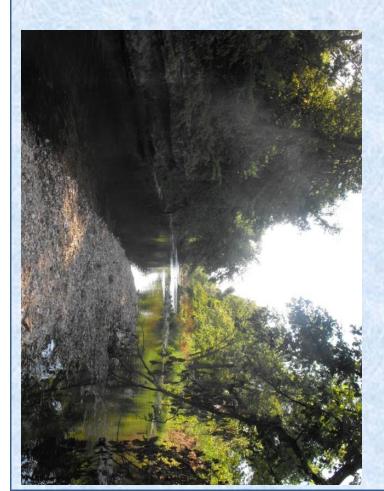
respiration that can result in greater variability in DO concentrations over time Increasing plant productivity results in a higher rate of photosynthesis and



≥USGS

Preliminary information – subject to revision. Not for citation or distribution.

If plant productivity is high, diurnal variability of DO generally increases



Understanding processes related to photosynthesis and respiration

Study Design Considerations

- A priori designation
- Gross divisions in nutrients and land use were used to classify sites into three impairment classes (Least, Moderate, and Most-disturbed)

Preliminary information – subject to revision. Not for citation or distribution.

Study Design Considerations (continued)

I The 5 Sites were ranked based on discrete nitrate and total phosphorus data (collected for past projects)

				Nitrate					Tota	Total Phosphorus	orus		Nutrient	ient
													Index	ex
	Ва	Baseflow		Sto	Stormflow		Ва	Baseflow		Sto	Stormflow			
	No. of			No. of			No. of			No. of				
	samples			samples			samples			samples			Sum	
		Mean			Mean			Mean			Mean		오	Final
Stream name		(mg/l) Rank	Rank		(mg/l) Rank	Rank		(mg/l) Rank	Rank		(mg/l)	Rank	(mg/l) Rank Ranks Rank	Rank
South Fork Little														
Red River	24	0.057	Ч	26	0.096	Ч	24	0.015	2	26	0.081	ч	თ	4
Illinois Bayou	9	0.086	2	17	0.202	2	9	0.013	ч	17	0.242	2	7	2
Big Creek	თ	0.171	ω	9	0.242	ω	4	0.016	ω	10	0.254	ω	12	ω
White River	23	0.309	4	12	0.399	4	23	0.032	4	12	0.255	4	16	4
Town Branch	œ	0.513	ъ	9	0.472	თ	œ	0.036	ъ	9	0.623	ы	20	თ

Distribution Preliminary Information—Subject to Revision. Not for Citation or

Study Design Considerations (continued)

- The 5 sites were also ranked based on 7 land-use metrics

All Roads (miles/sq.miles) Unpaved Roads (miles/sq.miles) Evergreen forest (%) Forest (%) Pasture (%) Confined animal feeding operations (no./sq.mi) Urban (%)

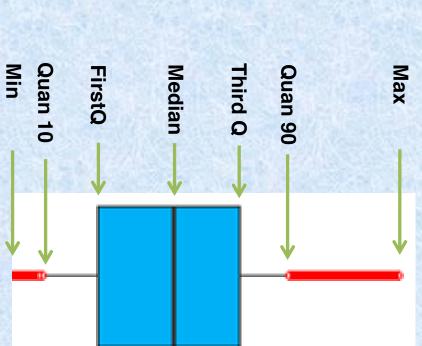
Stream name	Rank	Assigned Rank
South Fork Little Red		
River	2	Least disturbed
Illinois Bayou	4	Least disturbed
Big Creek	ω	Moderately disturbed
West Fork White River	4	Most disturbed
Town Branch	4	Mostdisturbed

Distribution Preliminary Information—Subject to Revision. Not for Citation or

Other Important Constituents (Surrogate Relations)

for groundwater influence on water-quality in a stream Specific conductance and water temperature often can be surrogates

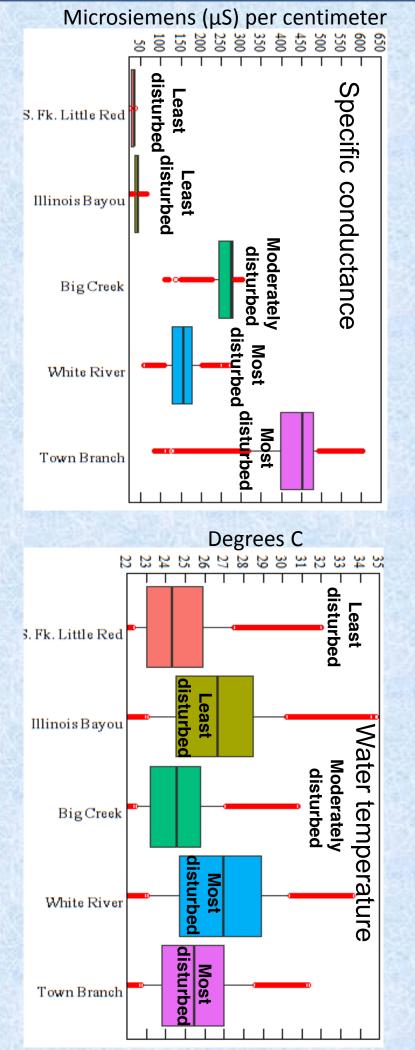
- contributed by groundwater during low-flow periods (baseflow), large parts of the flow in a stream are
- twice that of surface water (SW) USGS studies indicate that specific conductance in groundwater (GW) can be
- compared to SW Reduced atmospheric exposure results in lower DO concentrations in GW


Other Important Constituents (Surrogate Relations cont....)

Photosynthesis Significance of pH - CO₂ and water form a weak acid Respiration carbon dioxide + water (+ energy) → glucose + oxygen glucose + oxygen \rightarrow carbon dioxide + water (+ energy) 1 when CO₂ is added during respiration, pH generally decreases when CO_2 is removed during photosynthesis, pH generally increases

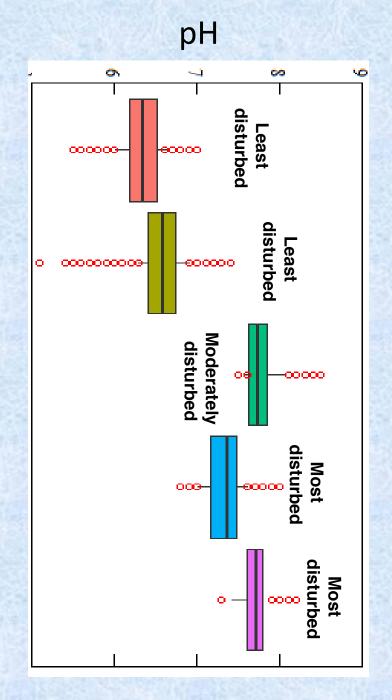
Box Plot Description

	1.100	-				
Town Branch	White River	Big Creek	Illinois Bayou	South Fork Little Red River	Stream name	Table 4a. Descriptive statistics for D0 data (concentrations are in milligram pe
07048495	07048600	07055814	07257500	07075250	site_no	atistics for D
4.6	з	4	4	5.4	min	0 data (c
5.4	5.1	5.4	6.3	<mark>6.8</mark>	quan10	oncentrati
5.8	5.8	6.2	6.8	7.2	firstQ	ons are ii
6.4	6.6	7.3	7.4	7.7	med	ı milligra
6.4	6.5	7.5	7.4	7.7	mean	m per liter
6.9	7.2	8.7	7.9	8.2	thirdQ	er)
7.3	7.8	10.1	8.4	8.6	quan90	
8.5	10.3	12.2	9.9	9.9	max	
	07048495 4.6 5.4 5.8 6.4 6.4 6.9 7.3	07048600 3 5.1 5.8 6.6 6.5 7.2 7.8 07048495 4.6 5.4 5.8 6.4 6.4 6.9 7.3	07055814 4 5.4 6.2 7.3 7.5 8.7 10.1 07048600 3 5.1 5.8 6.6 6.5 7.2 7.8 07048495 4.6 5.4 5.8 6.4 6.4 6.9 7.3	07257500 4 6.3 6.8 7.4 7.9 8.4 07055814 4 5.4 6.2 7.3 7.5 8.7 10.1 07048600 3 5.1 5.8 6.6 6.5 7.2 7.8 07048495 4.6 5.4 5.8 6.4 6.4 6.9 7.3	070752505.46.87.27.77.78.28.60725750046.36.87.47.47.98.40705581445.46.27.37.58.710.10704860035.15.86.66.57.27.8070484954.65.45.86.46.46.97.3	site_nominquan10firstQmedmeanthirdQquan90070752505.46.87.27.77.78.28.60725750046.36.87.47.47.98.40705581445.46.27.37.58.710.10704860035.15.86.66.57.27.8070484954.65.45.86.46.46.97.3



SORANGE

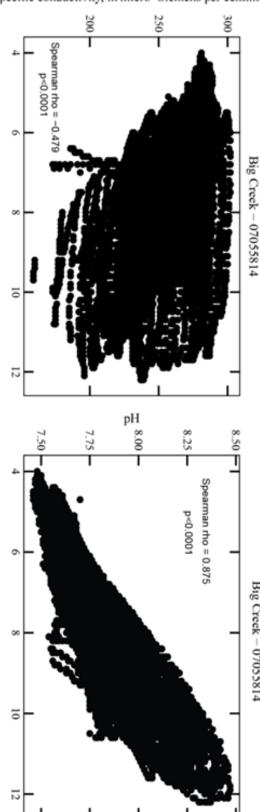
Prel											Irrient
iminary	Том	Wh	Bi	Illin	South Re	Stream name				Dissolved oxygen, mg/L	DUUR
Preliminary Information—Subject to Revision. Not for Citation or Distribution	Town Branch	White River	Big Creek	Illinois Bayou	South Fork Little Red River	i name				S. Fk. Little Red	trient and land-use indices and DU co
-Subject to	07048495	07048600	07055814	07257500	07075250	Site no.				S. Fk. Little Red	
Revisior	7,488	11,007	14,623	27,986	21,715	values	unit	No. of		BigCreek urbed dist	E C.A.
1. Not for	2,494	2,976	2,992	1,046	75	6 mg/L	values <	unit	No. of	White River	
Citation c	33.0	27.0	20.5	3.7	0.03	6 mg/L	values <	of unit	Percent		
or Distrib											ncentratio
ution											0 TIO


Continuous DO statistics indicated a strong connection between the nutrient and land-use indices and DO concentrations

Specific conductance and water temperature generally ndicated some degree of GW influence at two of the three sites that were most disturbed

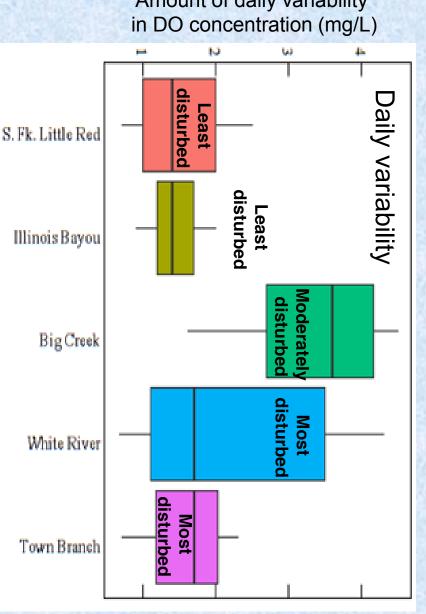
≥USGS Preliminary Information—Subject to Revision. Not for Citation or Distribution

pH was much lower at the two least-disturbed sites compared to sites that were more disturbed



Preliminary Information—Subject to Revision. Not for Citation or Distribution

DO was negatively correlated to specific conductance and positively correlated to pH


Snearman rho = 0 875				per
			and shares	cer 300
Big Creek - 07055814		Big Creek - 07055814	Big Cre	ntimet
4 0 0 10		,		er
	0.41	-0.17	07048495	Town Branch
	0.50	-0.20	07048600	White River
K	0.87	-0.48	07055814	Big Creek
productivity	0.19	-0.33	07257500	Illinois Bayou
All indication of high	0.13	-0.20	07075250	Little Red River
An indication of high	CF 0	30.0		South Fork
	Dissolved oxygen x pH	Dissolved oxygen x Specific conductanœ	Site no.	Stream name

Specific conductivity, in micro-Siemens per centimete

Preliminary Information—Subject to Revision. Not for Citation or Distribution

variability generally had highest nutrient concentrations Even though some low-end variability can be explained by GW influence, sites with the highest amount of DO and more intense land use

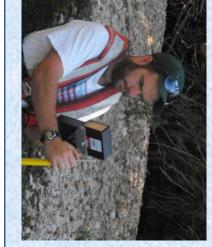
Amount of daily variability

Preliminary Information—Subject to Revision. Not for Citation or Distribution

Preliminary Conclusions

- L DO concentrations at the two least-disturbed sites exceeded the Arkansas standard of 6 mg/L for less than 4% of the unit values indicating
- 1) that the current standard is obtainable (i.e. not too high), and
- appropriately with the current assessment methodology 2) that continuous DO data (e.g 15-minute unit values) can be used (10% allowable exceedance of the 6 mg/L standard)
- Some of the DO variability at the low end of the data range (near the 6 mg/L standard) for some sites in the Boston Mountains may be explained by GW range indicates a relation with nutrient concentrations influence; however, a high degree of variability at the upper end of the

L


Not for Citation or Distribution Preliminary Information—Subject to Revision.

Future Directions

- Developing R code and scripts
- I. streamlining the data evaluation process data so that the Arkansas Department of Environmental Quality (ADEQ) can access and use USGS continuous

Not for Citation or Distribution Preliminary Information—Subject to Revision.

We would like to acknowledge:

Brian Breaker (USGS, for data retrieval)

funding) Tate Wentz and Jessie Green (Arkansas Department of Environmental Quality - for review comments and partial

Questions???

